Логистическая регрессия

Описание

Логистическая регрессия — это разновидность множественной регрессии, общее назначение которой состоит в анализе связи между несколькими независимыми переменными и зависимой переменной.

С помощью логистической регрессии можно оценивать вероятность того, что событие наступит для конкретного испытуемого (больной/здоровый, возврат кредита/дефолт и т.д.).

Важно: входные данные никогда не должны содержать пропусков, выходные данные не должны содержать пропусков во время обучения.

Порты

Вход

  • — Входной источник данных (таблица данных) — обязательный порт;
  • Управляющие переменные (переменные) — необязательный порт, переменными можно задать значения параметров мастера настройки.

Выходы

  • — Выход регрессии. Таблица, состоящая из полей:
    • Событие|Прогноз.
    • Вероятность события|Прогноз.
    • Событие|Факт.
    • Поле выходных данных|Прогноз.
    • Все поля исходного набора данных.
  • Коэффициенты регрессионной модели (таблица данных).
  • Сводка (переменные).

Взвешивание записей

Для логистической регрессии предусмотрена возможность задать весовые коэффициенты для каждой записи (строки) обучающих данных.
Весовой вектор (столбец из входной таблицы для узла "Логистическая регрессия", используемый для определения «весов») выбирается на этапе «Настройка входных столбцов». Для этого выбирается свойство «Назначение» — «Вес».

Взвешивание записей
Рисунок 1. Взвешивание записей

«Веса» должны быть вещественным положительным числом с типом данных «Непрерывный».
Записи с нулевыми «весами» и пустыми значениями не участвуют при построении модели.
Если при построении логистической регрессии не назначить «Вес», весовые коэффициенты принимаются равными 1 для каждой записи.

Мастер настройки узла

Включает следующие группы параметров:

Разбиение на множества

Страница Разбиение на множества мастера настройки узла позволяет разделить множество на обучающее и тестовое:

  • Обучающее — cтруктурированный набор данных, применяемый для обучения аналитических моделей. Каждая запись обучающего множества представляет собой обучающий пример, содержащий заданное входное воздействие и соответствующий ему правильный выходной (целевой) результат.
  • Тестовое — подмножество обучающей выборки, содержащее тестовые примеры, т.е. примеры, использующиеся не для обучения модели, а для проверки его результатов.

Доступные параметры:

  • Размер обучающего и тестового множества в процентах или строках. Может быть задан с помощью переменных.
  • Метод разбиения на обучающее и тестовое множество. Существует два метода разбиения:
    • Случайный — случайно разбивает множество записей на обучающее и тестовое множество.
    • Последовательный — группы строк множеств (обучающее, неиспользуемое, тестовое) выбираются последовательно, т.е. сначала выбираются те записи, которые входят в первое множество, затем — во второе и т.д. Порядок множеств можно менять (кнопки Сдвинуть вверх, Сдвинуть вниз).
  • Метод валидации, который может принимать следующие значения:

Настройка логистической регрессии

Набор параметров для настройки логистической регрессии можно сгруппировать в следующие блоки:

Настройка метода

  • Автоматическая настройка:
    • Значение логического типа. По умолчанию включено.
    • Влияет на использование следующих блоков параметров: если включена, то можно настраивать блок Приоритет автоматической настройки, если выключена, то можно выбирать алгоритм отбора факторов и защиту от переобучения и настраивать приоритеты.
  • Приоритет автоматической настройки:

    • Влияет на выбор конкретного метода и его настроек по шкале Точность — Скорость.
    • Целочисленный тип в диапазоне от 0 до 4 включительно:
      • Максимальная точность.
      • Повышенная точность.
      • Средняя скорость.
      • Повышенная скорость.
      • Максимальная скорость.

    При использовании автоматической настройки коэффициенты регуляризации определяются автоматически. Критерием для отбора является логарифм функции правдоподобия. При построении модели алгоритм подбирает такие коэффициенты регуляризации, которые обеспечивают наибольшее значение критерия для отбора. В зависимости от установленного приоритета применяются определенные параметры. Их значения приведены в таблице ниже.

Приоритет Регуляризатор Критерий остановки градиентного спуска ε
Максимальная точность Эластичная сеть (Elastic-net) 10-7
Повышенная точность Эластичная сеть (Elastic-net) 10-6
Средняя скорость Гребневая регрессия (Ridge) 10-5
Повышенная скорость Гребневая регрессия (Ridge) 10-4
Максимальная скорость Гребневая регрессия (Ridge) 10-3

Чем меньше значение критерия остановки градиентного спуска ε (f(xk+1) — f(xk) ≤ ε), тем точнее рассчитываются коэффициенты для регрессионной модели.

  • Денормализировать коэффициенты модели — денормализация необходима для интерпретации результатов. Т.к. модель может работать только с нормализированными данными, то для ее работы необходимо сначала нормализовать данные, которые поступили в модель, а затем провести денормализацию для того, чтобы данные приняли вид, который был до нормализации. Является значением логического типа, по умолчанию включено.

Настройка событий

  • Тип события. Может принимать следующие значения:
    • Первое в списке.
    • Последнее в списке.
    • Более редкое.
    • Более частое.
    • Задано явно.
  • Индекс заданного события.
    • Доступно для типа события Задано явно.
    • Значение целого типа, выбираемое согласно списку уникальных значений.

Настройка параметров

Используется, если не выбран флаг Автоматическая настройка или же он задан с помощью переменной.

  • Отбор факторов и защита от переобучения — значение перечисления:
    • Принудительное включение (Enter) — включение в регрессионную модель всех заданных признаков независимо от того, оказывают ли они значимое влияние или нет.
    • Пошаговое включение (Forward) — метод, который базируется на принципе: начать с отсутствия признаков и постепенно найти самые "лучшие", которые будут добавлены в подмножество.
    • Пошаговое исключение (Backward) — метод основан на следующем: начать со всех доступных признаков и последовательными итерациями исключить самые "худшие".
    • Пошаговое включение/исключение (Stepwise) — модификация метода Forward, однако на каждом шаге после включения новой переменной в модель осуществляется проверка на значимость остальных переменных, которые уже были введены в нее ранее.
    • Ridge (Гребневая регрессия) — процедура регуляризации L2, предназначена для защиты от переобучения (снижения степени переобучения обучаемой модели), что обеспечивает более качественное прогнозирование. Подразумевает введение "штрафов" для уменьшения значений коэффициентов регрессии. Величина "штрафов" вычисляется как сумма квадратов коэффициентов переменных, умноженная на коэффициент регуляризации.
    • LASSO (регрессия Лассо) — так же как и Ridge, применяется для регуляризации (защиты от переобучения) обучаемой модели. Подразумевает введение "штрафов" (вычисляется как сумма модулей коэффициентов переменных, умноженная на коэффициент регуляризации) для уменьшения значений коэффициентов регрессии. Регуляризация Lasso (L1) позволяет снизить размерность и упростить регрессионную модель за счёт зануления коэффициентов некоторых признаков.
    • Elastic-Net (регрессия "Эластичная сеть") — модель регрессии с двумя регуляризаторами L1, L2. Частными случаями являются модели LASSO L1 = 0 и Ridge регрессии L2 = 0. Данный тип регуляризации учитывает эффективность обоих методов регуляризации и применяется в тех случаях, когда важно сохранить корреляционную связь переменных и не допустить зануление коэффициентов регрессионной модели (как в случае с LASSO).
  • Приоритет точность/скорость.
    • Целочисленный тип в диапазоне от 0 до 4 включительно:
      • Максимальная точность.
      • Повышенная точность.
      • Средняя скорость.
      • Повышенная скорость.
      • Максимальная скорость.
  • Приоритет точные/недостоверные данные.
    • Целочисленный тип в диапазоне от 0 до 4 включительно:
      • Точные данные.
      • Повышенная точность.
      • Средняя точность.
      • Пониженная точность.
      • Недостоверные данные.
  • Приоритет меньше/больше факторов.
    • Целочисленный тип в диапазоне от 0 до 4 включительно:
      • Минимум факторов.
      • Меньше факторов.
      • Среднее число факторов.
      • Больше факторов.
      • Максимум факторов.

Перечисленные опции доступны для различных методов:

Метод Приоритет точность/скорость Приоритет точные/недостоверные данные Приоритет меньше/больше факторов
Enter
Forward
Backward
Stepwise
Ridge
LASSO
Elastic-Net
  • Использовать детальные настройки — позволяет более развернуто настроить логистическую регрессию (появляется дополнительная страница мастера — блок детальных настроек). Является значением логического типа, по умолчанию выключено.

Примечание: все доступные параметры настройки логистической регрессии можно задавать с помощью переменных.

Поправка на долю событий

Данная опция используется в качестве способа введения поправки на априорную (заранее известную) вероятность. Поправка осуществляется корректировкой константы финальной модели.

Введение поправки на априорную вероятность влияет на результаты отчётов:

  • в отчёте по логистической регрессии будет изменена константа финальной модели узла;
  • в визуализаторе «Качество бинарной классификации» изменится количество верно классифицированных событий и не-событий, а также показатели качества классификации в таблицах.

Поправка на долю событий может осуществляться:

  • на основе обучающего множества (используется по умолчанию);
  • на основе тестового множества;
  • вручную.

Если на момент построения модели априорная вероятность точно не определена, лучше использовать опцию по умолчанию.

Детальные настройки

Используются, если включен блок настроек параметров и в нем установлен флаг Использовать детальные настройки, или же он задан с помощью переменной.

Детальные настройки объединяются в следующие блоки параметров:

Настройки метода

Доступные параметры:

  • Точность решения — критерий остановки итераций. Настройка, которая позволяет определить точность нахождения минимума функции ошибки. Значение вещественного типа от 0 до 1. Представляет собой редактор с шагом изменения значения 0,000001.
  • Порог отсечения — определяет расчетное значение уравнения регрессии. Значение вещественного типа от 0 до 1. Представляет собой редактор с шагом изменения значения 0,1.
  • Включить в модель константу — добавляет в модель зависимую переменную.

Настройки расчета статистики

Доступные параметры:

  • Рассчитать доверительный интервал.
  • % доверительного интервала.
  • Режим расчета статистики:
    • Не рассчитывать.
    • Для всех моделей.
    • Для финальной модели.

Настройки регуляризации

Доступные параметры:

  • Установка коэффициента L1-регуляции — настройка данного параметра возможна только для алгоритмов LASSO, Elastic-Net;
  • Установка коэффициента L2-регуляции — настройка данного параметра возможна только для алгоритмов Ridge, Elastic-Net.

Для каждого из параметров можно задать либо автоматическую установку значения, либо ввести необходимое значение вручную.

Настройки отбора факторов

Доступные параметры:

Примечание: все доступные параметры детальных настроек можно задавать с помощью переменных.


Статьи в разделе:

Результаты поиска по запросу «» ()

    Нет результатов поиска по запросу ""